Journal Club 2: Efficient Gene Editing in T Cells

BMES Cell Team Fall 2020

Outline

- Background information on T Cells
- · Article Discussion
- Reminders and Announcements

• **Definition:** T Cells are part of the body's immune system. They are especially helpful in eliciting a response to fight infections.

- There are two types of T Cells
 - Helper T cells communicate with other cells of the immune system by releasing cytokines
 - Cytotoxic T cells kill infected cells; they are activated by cytokines secreted by helper T cells

- There are different two different glycoproteins on T cells
 - Helper T cells contain CD4
 - Cytotoxic T cells contain CD8, which is a more powerful glycoprotein
- T cells originate from stem cells in bone marrow
- A mature T cell will contain T cell receptors (TCR) on its membrane
 - Once a specific receptor binds to a target antigen, it will trigger the T cell to divide into clones
 - This results in a pool of T Cells that are specific for a particular antigen

Source: Biology - How Life Works (2e)

Summary Table

	Helper T Cells	Cytotoxic T Cells
Functions	Activates other immune cells by secreting cytokines	Kills infected cells
Surface Molecule	CD4	CD8
MHC Protein	Class II	Class I

Article Discussion

 There are several genetic editing techniques mentioned in the article, but the most prominent is CRISPR/Cas9

Emmanuelle Charpentier Max Planck Institute

Jennifer Doudna UC Berkeley

How does CRISPR/Cas9 work in the lab?

How does CRISPR/Cas9 work in the lab?

How does CRISPR/Cas9 work in the lab?

As shown, the two repair mechanisms for CRISPR are HR and NHEJ:

- Homology Repair
 - Used for CRISPR experiments that require extreme precision
- Non-Homologous End Joining
 - Typically introduces mutations within genetic material
 - Also known as "sloppy repair"

Figure Analysis

Figure 1. Primary Human T Cells Can be Genetically Modified to Introduce Exogenous Sequences or Disrupt Endogenous Genes. T cells isolated from donor blood are activated through CD3/CD28 stimulation. Activated T cells can be transduced with lenti- or retroviruses or electroporated with Sleeping Beauty transposon system components to achieve non-site specific integration for transgenic constructs. Alternatively, activated T cells can be electroporated with DNA mRNA, or proteins encoding Cas9 nuclease, transcription effector nuclease (TALEN), or zinc-finger nuclease (ZFN) to achieve site-specific gene disruption. Finally, Cas9, TALEN, and ZFN can be co-delivered with homology-directed repair (HDR) templates to site-specifically integrate transgenic constructs. None of the editing methods achieves 100% efficiency, thus some cells will integrate the design general production.

sequences while others will experience insertions/deletions (indels) in the targeted region without integration of the desired sequence.

Article Discussion

- Define the following terms or acronyms:
 - CAR
 - NHEJ
 - HR (or HDR)
 - sgRNA
 - Transposon
 - Exogeneous DNA
 - CRISPR
 - Cas9
 - Indels
- What is the main idea of the article?
- What did you find interesting about the article?

Article Discussion

- What other applications of CRISPR/Cas9 could you think of?
- Would you use HR or NHEJ for the following experiments and why?
 - Engineering CAR T cells so that they can be more efficient in fighting cancer
 - You want to disable the effectiveness of a bacteriophage by modifying its genes
 - Developing an mRNA-based vaccine to simulate the immune system
 - Introducing a gene to enhance the growth rate of plants (GMOs)