## Module 1: Cell Basics

BMES Cell Team Fall 2020



### Outline

- Components of a Cell
- Protein Synthesis and the Central Dogma
- Cell Morphology
- Cell Confluency and the Basics of Microscopy
- Separable Differential Equations to Model Cell Growth (Time Permitting)
- Group Zoom Picture for Website
- Worksheet Breakout Room Session
- · Reminders and Announcements
- Optional Class Advising and Recommendations Session

## Cells

- **Definition:** Cells are the basic blocks of life. (Informal)
- → Cells make up tissues
  - → Tissues make up organs
    - → Organs make up organisms









- Generally, cells are made up of a cell membrane, organelles, and cytosol
  - Cytoplasm is everything that is enclosed inside the cell membrane
  - Cytosol is only the fluid component of the cytoplasm

"The cytosol is contained within the cytoplasm"



- Important Organelles
  - Nucleus: The control center (contains DNA in the form of chromosomes)
  - Endoplasmic Reticulum: Proteins are created here.
  - Mitochondria: Generates ATP during cellular respiration to provide energy
  - Cell Membrane: Contains proteins and a phospholipid bilayer to allow for transport of essential molecules



#### Question:

Do all cells look like this?

#### **Answer:**

- $\rightarrow$  No
- → This is just a general model of a cell

 As you will see later, there are many types of cells, and each of them has a specialized function

#### The Nucleus

- The nucleus contains DNA in the form of chromosomes
- If you ZOOM in all the way, you can see that DNA is made up of four different bases that pair in specific ways:
  - Adenine (A) pairs with Thymine (T)
  - Cytosine (C) pairs with Guanine (G)
- The order of the four nucleic acids serve as the "code" to create proteins
  - Proteins are the "essential workers" of a cell



# Purines vs. Pyrimidines

#### **The Purines**



### **The Pyrimidines**







#### **Cell Membrane**





- The cell membrane is made of a "phospholipid bilayer"
- This structure allows it to be selectively permeable, meaning that only certain molecules can pass through
  - Thus, the cell can filter out most harmful molecules and maintain homeostasis

#### **Cell Membrane**

- So what molecules could pass through the cell membrane, exactly?
  - Small, uncharged molecules can freely pass through the cell membrane
  - Large molecules that are beneficial to the cell can pass through with the aid of a transport protein



 Large molecules that are detrimental to the cell cannot pass through

**Definition:** The Central Dogma describes the process by which proteins are synthesized.

- DNA → RNA → Proteins
- This is how cells use DNA to accomplish their function
- All cells in your body carry the same DNA sequence<sup>1</sup>, but only a unique combination of genes end up being expressed
- Thus, different cells produce different proteins, and this determines the overall function of the cell

<sup>&</sup>lt;sup>1</sup> Except B-cells, which are part of the immune system

### **Protein Synthesis Theoretical Example**



Chromosome N

- Every cell in your body will have a Chromosome N that contains genes A, B, and C like the figure shown on the left
- However, "αβ-cells" will only express proteins coming from genes A and B
- "δ-cells" will only express proteins coming from gene C

- The Central Dogma is divided into two steps: transcription and translation
  - Transcription occurs when the coding DNA strand is copied onto messenger RNA (mRNA) via the template strand
  - Translation occurs when a complementary transfer RNA (tRNA) attaches a particular amino acid onto the polypeptide chain
- The final result is a functional protein
- Remember that different cells produce different proteins

### **Transcription Theoretical Example**

- Transcription is the first step of the Central Dogma
- Consider  $\delta$ -cells from the previous example, which will only produce proteins coming from gene C
  - Thus, genes A and B will not be transcribed



### **Transcription Theoretical Example**

- Things to note from the example you just saw:
  - mRNA is the end product of transcription
  - mRNA contains four bases just like DNA but there are two major differences:
    - RNA is single stranded
    - Thymine (T) is replaced by Uracil (U)
  - The sequence of mRNA is the same as that of the coding strand
  - The sequence of mRNA is complementary to the template strand

### **Translation Theoretical Example**

• Translation is the second and last step of the Central Dogma



## **Translation Theoretical Example**

Fast forward until it reaches the STOP codon



### **Translation Theoretical Example**

The final protein appears as follows:



 Remember that proteins fold right after they are released from the ribosome due to intermolecular forces generated between amino acids



Protein synthesizers of the cell

# Cell Morphology

 Definition: Cell morphology describes the qualitative properties of a cell.

- You can describe a cell by its size, shape, and physical appearance
- There are many kinds of cells, each with a different function
  - As we saw earlier, this is because each cell-type has a unique set of proteins
  - Directed by their DNA
- The morphology of a cell is reflective of the cell's function

## Types of Cells

### **Important Remarks:**

- Since the appearance of a cell is determined by its function, certain types of cells may contain more of a particular organelle compared to another
  - For instance, a hair cell will contain less mitochondria compared to a muscle cell because it requires less energy

### **Red Blood Cells**

#### **Function:**

- Carries oxygen from the lungs to the tissues
- Carries carbon dioxide from the tissues back to the lungs
- Moves passively, as they are pumped by the heart

- · Round and biconcave
- Flexible
- Contains hemoglobin, which is a protein that binds oxygen
- No nucleus



# Macrophages

#### **Function:**

- Part of the immune system
- Destroys foreign material, microorganisms, and tumor cells
- Secretes signals for inflammatory responses

- Membrane-bound lysosomes
- Contains a lot of digestive enzymes
- Many surface receptors on the membrane



### **Neurons**

#### **Function:**

- Communication through electrical signals converted to chemical signals (neurotransmitters)
- Both sensory and motor functions

- Cell body with a nucleus
- Elongated
- Extensions called axons and dendrites
- Connect to other neurons at junctions called synapses



## **Endothelial Cells**

#### **Function:**

- Make up inner linings of blood vessels and organs
- · Regulate blood clotting by producing proteins

- Thin and flat
- Cells connected by tight junctions
- Selectively permeable



## **Fibroblasts**

#### **Function:**

- Part of connective tissue
- Produces proteins that make up the extracellular matrix (ECM)
- · Participates in wound healing

- Spindle-shaped
- Closely packed
- Branched



# Myocytes – (Muscle Cells)

#### **Function:**

 Convert potential energy stored in the form of ATP into kinetic energy (motion)

- The structure varies between the three types of myocytes
  - Smooth, cardiac, and skeletal
- In general, they are elongated and contain many nuclei



### Stem Cells

#### **Function:**

- Can mature into one of several cell types
- Capable of self-renewal

### **Types of Stem Cells:**

- Totipotent stem cells can differentiate into any cell-type in the body
- Pluripotent stem cells can differentiate into a certain category of cell-types
- Multipotent stem cells can differentiate into a more specific category of cell-types



## **Stem Cells**



### **Cancer Cells**

#### **Function:**

- · Grow and divide at an abnormally high rate
  - Use up oxygen and nutrients that healthy cells need
- Genes responsible for regulating cell division are mutated
- Rapid growth leads to a tumor
- Cancers can metastasize (spread to other parts of the body)



## Cell Confluency

 Definition: Cell confluency describes the density of cells in a plate or flask.

Cell Confluency = 
$$\frac{\text{Surface area occupied by cells}}{\text{Total surface area}} \times 100\%$$

- When a flask reaches a certain level of confluency, cells need to be split
  - If the confluency is low, cells will lack communication
  - If the confluency is too high, cells start to compete for resources and die
    - Due to lack of nutrients and O<sub>2</sub>

# **Cell Confluency**



## **Basics of Microscopy**

Different types of microscopes serve different purposes

### · Brightfield microscopy

- White light is transmitted onto the sample
- Dense areas appear darker
- Used for samples that have natural contrast

### Fluorescence microscopy

- Used to detect gene expression by the presence of certain proteins
- Fluorophores are molecules that are attached to these proteins, and they emit a specific wavelength (λ) if successfully attached
- Emission filter on microscope filters out the transmitted light

# **Basics of Microscopy**



Brightfield Microscopy



Fluorescence Microscopy

## **Reminders and Announcements**

#### **Cell Team Events**

- Journal Club #1 this Thursday at 6pm PT
  - COVID-19 Vaccines in Development
  - · Please read over the article on our website before the meeting
- Module #2 next Monday at 7pm PT
  - Western Blots



## **Reminders and Announcements**

#### **BMES Events**

### Class Planning Workshop



Unsure of which classes to choose for Winter Quarter or have questions on how to plan out your class schedule?

Join BMES on Monday November 9th from 7:30 – 9:00pm PT for drop-in advising with Academic.

November 9 (7:30–9pm PT)
Make sure to RSVP!

## **Reminders and Announcements**

#### **BMES Events**

Keck Graduate Institute (KGI) Workshop and Info-session



Join Dr. Anna Hickerson for a presentation on "Artificial Intelligence Applications for Medical Devices, Current and Future Ideas."

Then, we will hold a short info-session on KGI and learn more about the graduate school application process.

November 10 (6–8pm PT)
Make sure to RSVP!