Module 6: Genetic Engineering

BMES Cell Team
Winter 2021

Outline

- Breakout Rooms to Socialize
- Quarter Long Group Projects Announcement
- Introduction to Genetic Engineering
- Laboratory Methods for Genetic Engineering
- Real Life Applications of Genetic Engineering
- Short Worksheet
- Winter Problem Set Discussion (Select Problems Only)

Introduction to Genetic Engineering

Definition: Genome editing is a way of making specific changes to the DNA of a cell or organism.

There are four steps to genome editing:

Insert → Delete → Modify → Replace

Introduction to Genetic Engineering

Applications of Genetic Engineering

Introduction to Genetic Engineering

Applications of Genetic Engineering

1. Cloning

• **Definition:** Cloning is the process whereby a *target gene* is introduced into a plasmid.

Definition: A plasmid is a circular piece of DNA that replicates independently of a cell's chromosomes.

1. Cloning

Step 1:

- Cut open the plasmid and "paste" in the gene
- This process relies on restriction enzymes (which cut DNA) and DNA ligase (which joins DNA)

1. Cloning

Step 2:

 Insert the plasmid into bacteria. Use antibiotic selection to identify the bacteria that took up the plasmid.

1. Cloning

Step 3:

 Grow up lots of plasmid-carrying bacteria and collect either the plasmids or the proteins.

2. Transfection

- Definition: Transfection is the process whereby the nucleic acid sequences are either introduced by biochemical or physical processes.
- We will use immortalized eukaryotic cell lines, which can be stable or transient
 - Stable: Will continuously express transfected DNA and pass it onto daughter cells
 - Transient: Will express transfected DNA for a short time.
 Future generations will not be affected.

2. Transfection

Biochemical

Physical

3. Transduction

• **Definition:** Transduction is the process whereby the nucleic acid sequences are introduced by viral vectors.

Steps:

- Transfection: Introduce the desired plasmid and "packaging proteins" into a producer cell which constructs viruses containing the plasmid gene sequence
- Collect the virus produced and dispose of the producer cells
- Transduction: Add the virus to your desired cells to induce expression of the plasmid gene sequence

4. CRISPR-Cas9

- The Gold Standard for modern genome editing
- Once researchers have identified a gene they want to edit, they need:
 - A guide RNA that is engineered to be complementary to the target DNA
 - A gene for a protein (Cas9) that cleaves DNA when it associates with the guide RNA
 - A piece of DNA that acts as a template for the new desired sequence

4. CRISPR-Cas9

Biology: How Life Works (3e)

How does CRISPR/Cas9 work in the lab?

- cutting the tanget DNUA

 1. Cas9 prolein binds to the

 Small guide RNA (SJRNA)
 - 2. Cas9/sgRNA complex scans the DNA for the target sequence
 - 3. sgRNA hybridizes with the target DNA
 - 4. Car 9 protein cuts the target DNA to create a double -structed break

How does CRISPR/Cas9 work in the lab?

How does CRISPR/Cas9 work in the lab?

As shown, the two repair mechanisms for CRISPR are HR and NHEJ:

- Homology Repair
 HR or HDR
 - Used for CRISPR experiments that require extreme precision
- Non-Homologous End Joining
 - Typically introduces mutations within genetic material
 - Also known as "sloppy repair"

5. siRNA

 Small-Interfering RNA (siRNA) is used to inhibit gene expression by blocking translation

Real-Life Applications of Genetic Engineering

If you are interested in learning more about the uses of Genetic
 Engineering, please read the optional handout posted on the website

