Module 7: PCR & ELISA

BMES Cell Team
Winter 2021

Outline

- PCR
- Purpose
- Procedure
- Virtual Walkthrough
- ELISA
 - Purpose
 - Procedure
 - Virtual Walkthrough

PCR

BMES Cell Team Winter 2021

What is PCR?

- Definition: Polymerase Chain Reaction (PCR) is a method of copying small, targeted sequences of genetic material.
- Developed by Dr. Karry Mullis in 1983
 - Published 1985 article describing PCR for identifying hemoglobin mutation responsible for sickle-cell anemia
- Mullis awarded 1993 Nobel Prize in Chemistry for his invention of the PCR technique
- Roche bought the rights for PCR in 1991
 - Used PCR for molecular diagnostics

- DNA analysis only yields accurate data if the quantity of DNA is above the instrument's limit of detection
 - Requires amplification of harvested DNA sample
- Before PCR, this amplification process was indirect and laborious
 - PCR provided a faster way to get many more sample copies

Associated Companies

- EMLabs (mold)
- US Micro Solutions (fungus, bacteria)

 PCR is commonly used to detect the DNA microorganisms in the environment

- Examples:
 - Coliforms in fresh water supplies
 - Bacillus anthracis spores in soil
 - Viruses in groundwater
 - MRSA in households of infected patients

Associated Companies

- SummerBio (UCLA COVID testing)
- Roche
- Fisher Sci

PCR is commonly used to amplify DNA for medical diagnosis and disease study

- **Examples:**
 - Diagnosing SARS-CoV-2 infection
 - Diagnosing *N. gonorrheae* infection
 - Studying BRCA1 activity in breast cancer
 - Detection of Down's Syndrome

Associated Companies

- Centogene
- Novogene

 PCR is commonly used to amplify DNA for medical diagnosis and disease study

- Examples:
 - Testing for the Tay-Sachs gene
 - Examining changes in astronaut DNA

ens://www.genesinsnare.org/news/hlog/using.nr.vnur.genes.snare.nronocal/ https://www.srienrelearn.org.nz/mage_mans/35.what.is.nr.rused.for

Associated Companies

- 23andMe
- Ancestry

 PCR is commonly used to amplify DNA for consumers interested in their own genetics

- Examples:
 - At home genetic testing kits
 - Genetic mapping to find relatives

tos://www.genesinsnace.org/news/hlng/using.ncr.vour.genes.snace.nronosal/https://www.sciencelearn.org.nz/image_maps/35.what.is.ncr.used.fr

Associated Companies

- · Bio-Rad
- Thermo
 Fisher

- PCR is commonly used to test the quality of food products and amplify plant DNA for genetic modification
- · Examples:
 - Detecting adulteration of meat
 - Identifying GMOs
 - Testing food samples for bacterial contamination

- PCR is commonly used to amplify DNA from ancient remains and determine phylogenetic relationships
- Examples:

 Understanding genetic relationships of different bacteria and plant species

Associated Companies

- GEDMatch
- miniPCR
- QIAGEN

- PCR is commonly used to amplify DNA from crime scenes and identify perpetrators
- Examples:
 - Genetic evidence used to identify the
 Golden State Killer

PCR Procedure: Required Components

Thermal Cycler

PCR Procedure: The Three Main Steps

PCR Procedure: Video

Oxford Walkthrough

https://www.youtube.com/watch?v=jFl6HmcGw9Q

Virtual Lab

https://www.youtube.com/watch?app=desktop&v=G4sEhNKoPT8

Benefits and Limitations of PCR

Benefits

- Exponential Amplification
- Fast
- Relatively Simple
- Highly Sensitive
- Companies manufacture ready-to-use PCR kits
- "Gold standard" in modern research

Limitations

- Contamination can manipulate results
- Conducted at 3 different temperatures
- Requires denaturation of DNA sample
- Requires prior known sequence to design primers

Alternatives to PCR

Recombinase Polymerase Amplification (RPA)

Mechanism

 Expansion from oligonucleotide primers

Benefits

- Isothermal
- Exponential Amplification
- Single Tube

Limitations

- Less established than PCR
- · Kits not widely available

Alternatives to PCR

Fluorescence In Situ Hybridization (RNA-FISH)

Mechanism

 Binding of DNA to a substrate → fluorescent DNA nanostructures

Benefits

- No enzymes
- Isothermal
- One step

Limitations

 Linear Amplification → less sensitivity to analytes

ELISA

BMES Cell Team
Winter 2021

What is ELISA?

- Definition: Enzyme-linked immunosorbent assay (ELISA) is a method of detecting specific antibodies and antigens.
- Developed by Eva Engvall and Peter Perlmann
 - Published their first paper in 1971
 - Engvall went on to apply ELISA to parasitology, microbiology, and oncology
- Currently used to test for antibodies, food allergens, and disease antigens

Why do we do ELISA?

- The ELISA system can be utilized to detect many different types of proteins in biological samples
- ELISA is key to detecting:
 - Pregnancy
 - HIV infection

ELISA Procedure: Required Components

ELISA Procedure: The Four Main Steps

Coating

Antigen is adsorbed onto well in ELISA plate in coating buffer

Remove buffer and wash plate

Blocking

A buffer containing unrelated protein is used to block free sites in the wells

Remove buffer and wash plate

Detection

Enzyme conjugated detection antibody binds antigen

Remove buffer and wash plate

Readout

Substrate is catalyzed by enzyme to generate colored readout

ELISA Procedure: Video

Edvotek Walkthrough

https://www.youtube.com/watch?v=zR xlV5v f4&t=166s

Virtual Lab

https://www.youtube.com/watch?v=pmdoA8Xiviw&t=45s

Benefits and Limitations of ELISA

Benefits

- Selective
- Relatively Simple
- Highly Sensitive
- Safe
- Cheap
- Companies manufacture ready-to-use ELISA kits

Limitations

- Antibodies require refrigerated transport and storage
- Will yield false results if there is not sufficient blocking
- High probability of a false positive or false negative

Alternatives to ELISA

Radioimmunoassay (RIA)

Mechanism

 Radioactive and nonradioactive antigens compete for antibody binding sites

Benefits

- Highly Sensitive
- Quantitative Measurement

Limitations

 Uses Radioactive Materials (Hazardous)

Alternatives to ELISA

Multiplex Assay (Luminex Beads)

Mechanism

 Immunoassay that uses beads to bind the antibody

Benefits

- Multiple analytes at the same time
- Measure analytes concentration of different orders of magnitude

Limitations

· Less established than PCR

